
File: WireShark Dissector for CobraNet Packets.doc Page 1

WireShark Dissector for CobraNet Packets
Ver 1.0 28 November 2018

Installation

Like any dissector, this is “installed” by copying the Lua file (dissector_cobranet.lua) to your

local user storage, i.e.,

C:\Users\<login name>\AppData\Roaming\Wireshark\Plugins

For example, if your login name is “jdoe”, put it in the folder: C:\Users\jdoe\AppData…

If Wireshark is already running, such as with a file loaded, you can have it bring in the new

plugin by going to the Analyze menu and selecting Reload Lua Plugins, or hitting the shortcut

keys Ctrl+Shift+L.

Basic Dissector Information/Usage

Once loaded, display of CobraNet packets in the top window change so that in the protocol

column, instead of showing a number (0x8819), it now says “CobraNet”. And, in the info

column, it shows what type of packet it is: Beat, Reservation or Audio.

The CobraNet packets are further dissected and displayed in the Packet Details pane (be sure it

is enabled in the View menu). At first one may see something such as below.

The last line says “CobraNet” and can be further expanded by clicking on the greater-than

symbol (>) beside it (circled in screenshot). This shows the dissection for the packet such as the

example below.

File: WireShark Dissector for CobraNet Packets.doc Page 2

The Reservation dissection has some sub-trees in it due to the variable size of the transmitter and

receiver lists. These may appear with the greater-than symbol, and can be opened up by clicking

on the symbols.

More Advanced Usage

With the CobraNet dissector installed, one can use this to do additional filtering and searching in

Wireshark. For example, to find all assigned CobraNet Transmitters on the network, one would

use the filter expression:

(cobranet.pdu == 1) && !(cobranet.tx_bundle_num == 0)

That is non-zero TX bundle number and packet type of reservation. Audio packets also have

transmitter bundle numbers in them, hence the need for the second term in the expression in case

there are also audio packets in the capture.

Okay, so how does somebody know how to build such filter

strings? There are two ways, with Wireshark helping you along the

way. Method 1 is to start typing in the filter box. Once you get

“cobranet.” (must include the period), Wireshark will display a

prompt of available fields, such as shown at right. This prompt

includes both recently used expressions (like the “cobranet.pdu ==

1” shown), followed by all the available fields in the CobraNet

dissector. One can either continue typing one of the

expressions/fields or simply click on the item in the prompt. (If the

prompt box goes away due to loss of window focus, you can bring

it back by deleting and re-typing the period.)

To complete the filter, one may have to use parentheses around

each expression and join them with logical operators like “and” and “or” or the programmer

versions: && and || (Wireshark accepts either for of logical operators).

File: WireShark Dissector for CobraNet Packets.doc Page 3

Method 2 is to right-click on some item in the CobraNet dissection that appears in the Packet

Details window and select either Apply as Filter or Prepare a Filter from the pop-up menu,

followed by ones choice in the sub-menu. For example, to create the filter shown previously, one

would click on the PDU type field in the Packet Details, Prepare a Filter and Selected.

Then, expand the Tx Bundles sub-tree and do the same right-clicking on a zeroed out TX

Bundle, such as below. One can manually edit/tweak the filter settings in the edit box now if

desired, or hit the go button (right arrow) or [Enter] key to have Wireshark apply the filter.

The same expressions can be used in the search (find) function as well if one leaves it set to the

default mode of “Display Filter”. Wireshark does not have the aids to build up the search

expression that it provides for the filter, so a good strategy would be to prepare a filter and then

cut-and-paste it from the filter area to the search edit box with shortcut keys (Ctrl-X and Ctrl-V).

File: WireShark Dissector for CobraNet Packets.doc Page 4

Lua Dissector File

In the event these instructions get separated from the .lua file needed for Wireshark, the file can

be reconstructed by copying the text below to a text editor like Notepad or Notepad++ and

saving it as dissector_cobranet.lua (although the name is not critical, only the extension).

-- Wireshark dissector for CobraNet protocol (ethertype == 0x8819)

-- Decodes all of reservation packet and accounts for different lengths of

transmitter/receiver lists for different technology/chips

-- Also decodes fields in top of Beat packet and top of Audio packet

-- Ken Tench <ken.tench@atlasied.com>

-- This version is an expansion upon the incomplete version started by

-- Eliot Blennerhassett <eblennerhassett@audioscience.com>

do

 -- Create a new dissector

 COBRANET = Proto ("cobranet", "CobraNet")

 local cobranet_ethertype = 0x8819

 -- Create the protocol fields

 local pdus= {[0]="Beat", [1]="Reservation", [0x10]="Audio"}

 local f = COBRANET.fields

 f.pdu = ProtoField.uint8 ("cobranet.pdu", "PDU Type", nil, pdus)

 f.version = ProtoField.uint8 ("cobranet.version", "Version")

 f.res_ip = ProtoField.ipv4 ("cobranet.res_ip", "IP address")

 f.cyc_num = ProtoField.uint16 ("cobranet.cyc_num", "Cycle Number")

 f.cyc_rate = ProtoField.uint16 ("cobranet.cyc_rate", "Cycle Rate

(pkts/sec)")

 f.cond_pri = ProtoField.uint8 ("cobranet.cond_pri", "Conductor Priority")

 f.res_ren_intrv = ProtoField.uint16 ("cobranet.res_ren_intrv", "Reservation

Renewal Interval (cycles)")

 f.tx_bundles = ProtoField.string("cobranet.tx_bundles")

 f.tx_bundle = ProtoField.bytes ("cobranet.tx_bundle", "Tx Bundle")

 f.tx_bundle_num = ProtoField.uint16 ("cobranet.tx_bundle_num", "Tx Bundle

Num")

 f.rx_bundles = ProtoField.string("cobranet.rx_bundles")

 f.rx_bundle = ProtoField.bytes ("cobranet.rx_bundle", "Rx Bundle")

 f.rx_bundle_num = ProtoField.uint16 ("cobranet.rx_bundle_num", "Rx Bundle

Num")

 f.unknown = ProtoField.bytes ("cobranet.unknown", "Unknown")

 f.the_rest = ProtoField.bytes ("cobranet.the_rest", "The Rest")

 function tx_bundle(buffer, subtree, n)

 local tx = subtree:add_le(f.tx_bundle_num, buffer(2 + n * 6, 2))

 tx:add(f.tx_bundle, buffer(n * 6, 6))

 end

 function tx_bundles(buffer, subtree, num_tx)

 local n

 local tx_tree = subtree:add(f.tx_bundles)

 tx_tree:set_text("Tx Bundles ["..num_tx.."]")

 for n = 0, num_tx-1, 1 do

 tx_bundle(buffer, tx_tree, n)

 end

 end

 function rx_bundle(buffer, subtree, n)

 local rx = subtree:add_le(f.rx_bundle_num, buffer(2 + n * 10, 2))

File: WireShark Dissector for CobraNet Packets.doc Page 5

 rx:add(f.rx_bundle, buffer(n * 10, 10))

 end

 function rx_bundles(buffer, subtree, num_rx)

 local n

 local rx_tree = subtree:add(f.rx_bundles)

 rx_tree:set_text("Rx Bundles ["..num_rx.."]")

 for n = 0, num_rx-1, 1 do

 rx_bundle(buffer, rx_tree, n)

 end

 end

 -- The dissector function

 function COBRANET.dissector (buffer, packet, tree)

 -- Adding fields to the tree

 local subtree = tree:add (COBRANET, buffer())

 local offset = 0

 local n

 local pdu_buf= buffer (0, 1)

 local pdu = pdu_buf:uint()

 local sect_len

 local num_txrx

 packet.cols.protocol:set("CobraNet")

 packet.cols.info:set(pdus[pdu])

 subtree:add (f.pdu, pdu_buf)

 subtree:add (f.version, buffer (1, 1))

 offset = 2

 if pdu == 0 then

 subtree:add_le(f.cyc_num, buffer(4,2))

 subtree:add_le(f.cyc_rate, buffer(8,2))

 subtree:add(f.cond_pri, buffer(10,1))

 subtree:add_le(f.res_ren_intrv, buffer(16,2))

 offset = 18

 end

 if pdu == 1 then

 subtree:add(f.res_ip, buffer(10, 4))

 -- Read length of section from next header

 offset = offset + 12

 sect_len = buffer(offset,1):uint()

 num_txrx = (sect_len -1) / 3

 tx_bundles(buffer(offset+2), subtree, num_txrx)

 -- Read length of section from next header

 offset = offset + (2*sect_len)

 sect_len = buffer(offset,1):uint()

 num_txrx = (sect_len -1) / 5

 rx_bundles(buffer(offset+2), subtree, num_txrx)

 offset = offset + (2*sect_len)

 end

 if pdu == 0x10 then

 subtree:add_le(f.cyc_num, buffer(4,2))

 subtree:add_le(f.tx_bundle_num, buffer(6,2))

 offset = offset + 6

 end

 subtree:add (f.the_rest, buffer(offset))

 end

 ether_table = DissectorTable.get ("ethertype")

 ether_table:add (cobranet_ethertype, COBRANET)

end

